Du sprint de la spéculation au marathon de la durabilité

L’euphorie autour de l’intelligence artificielle (IA) et l’explosion de la bulle Internet en 2000 partagent une tension fondamentale : celle entre les promesses transformatrices à long terme et les excès spéculatifs à court terme. De nombreux signaux actuels, des valorisations boursières démesurées à la formation d’un écosystème en circuit fermé, rappellent les dérives de la fin des années 1990.

Les projets d’intégration de l’IA échouent en majorité, et les business plans de certaines entreprises phares semblent déconnectés de la réalité opérationnelle. Des ambitions financières telles que celles affichées par OpenAI, qui visent des chiffres d’affaires de plusieurs centaines de milliards de dollars, paraissent disproportionnées par rapport aux marchés existants et aux modèles économiques actuels, qu’il s’agisse du B2B ou du B2C. Cette situation prépare une phase de désillusion massive, un passage inévitable de la « courbe de la hype ». Dans un an ? Dans deux ans, peut-être trois ? Nous verrons bien.

Mais l’éclatement d’une bulle n’est pas l’essentiel. L’IA reste une technologie fondamentalement transformatrice. La véritable question est de savoir comment passer d’une logique de sprint spéculatif à une approche de marathon axée sur la durabilité.


Un cadre stratégique pour une trajectoire durable

Pour naviguer à travers cette période de volatilité et se concentrer sur les bénéfices durables de l’IA, les entreprises et les investisseurs doivent adopter un cadre stratégique basé sur trois piliers.

1. Mesurer la valeur ajoutée réelle

Il est crucial de se défaire des indicateurs de valorisation déconnectés de la réalité et de se concentrer sur la valeur ajoutée tangible. .

  • De l’optimisation à la transformation : Au lieu de se limiter à des gains d’efficacité marginaux, les entreprises devraient chercher à appliquer l’IA pour créer de nouveaux modèles d’affaires, améliorer l’expérience client ou révolutionner leurs chaînes de valeur. L’IA n’est pas un simple outil d’optimisation, mais un catalyseur de transformation.
  • Investir dans le « monde réel » : Les applications les plus prometteuses de l’IA ne sont pas toujours les plus médiatisées. Les avancées dans les sciences fondamentales (découverte de molécules en chimie, nouveaux matériaux, biologie, physique nucléaire) et la mise à disposition d’auxiliaires opérationnels dans des métiers variés (aide à la rédaction pour les juristes, détection de défauts dans l’ingénierie, assistance au diagnostic médical) représentent des terrains d’investissement plus solides et moins spéculatifs.

2. Adopter une culture d’expérimentation patiente

L’IA n’est pas une solution « plug-and-play » qui produit des résultats instantanés. Elle nécessite une approche itérative et une tolérance à l’échec et à l’erreur.

  • Projets pilotes à petite échelle : Au lieu de lancer des projets d’intégration massifs et risqués, les entreprises doivent privilégier des projets pilotes ciblés, avec des objectifs clairs et mesurables. Cela permet d’apprendre, de s’ajuster et de prouver la valeur de l’IA avant de la déployer à plus grande échelle.
  • Investir dans les compétences internes : Le succès de l’IA ne dépend pas seulement de la technologie, mais aussi de la capacité des équipes à l’utiliser efficacement. Former les collaborateurs, recruter des talents spécialisés et créer une culture d’innovation continue sont des investissements fondamentaux qui garantissent une trajectoire durable.

3. Privilégier la collaboration ouverte

Le modèle en circuit fermé où les géants du numérique investissent dans les startups qui consomment leurs services peut masquer une dynamique de dépendance plutôt que de croissance saine.

  • Partenariats diversifiés : Les entreprises devraient chercher des partenaires technologiques et des fournisseurs de services variés pour éviter la concentration des risques. La diversification des sources (cloud, processeurs, modèles d’IA) encourage la compétition, stimule l’innovation et réduit les coûts.
  • Standardisation et interopérabilité : Encourager des standards ouverts permet d’éviter l’enfermement propriétaire et facilite l’intégration des technologies de différents acteurs. Cela crée un écosystème plus sain, où la valeur est créée à travers l’interconnexion plutôt que la dépendance.

La vraie valeur de l’IA ne se trouve pas dans la vitesse des levées de fonds ou l’ampleur des projections financières, mais dans la capacité à construire patiemment une trajectoire de transformation qui résout des problèmes concrets.

C’est en se concentrant sur les bénéfices durables que le marathon de l’IA portera ses fruits.

Retrouvez mon interview au sujet de l’IA sur le canal YouTube des FO Talks de Fair Observer : https://www.youtube.com/watch?v=s6eQdeT5h-M

La collection d’ebooks sur l’intelligence artificielle :

https://www.amazon.fr/dp/B0FK3PN2CH

et celle sur ses cas d’usage : https://www.amazon.fr/dp/B0FF1RR3YQ